Learning Rules from Incomplete Examples via Observation Models

نویسندگان

  • Janardhan Rao Doppa
  • Mohammad NasrEsfahani
  • Mohammad S. Sorower
  • Jed Irvine
  • Thomas G. Dietterich
  • Xiaoli Fern
  • Prasad Tadepalli
چکیده

We study the problem of learning general rules from concrete facts extracted from natural data sources such as the newspaper stories and medical histories. Natural data sources present two challenges to automated learning, namely, radical incompleteness and systematic bias. In previous work we proposed an approach that combines simultaneous learning of multiple predictive rules with differential scoring of evidence based on implicit observation models to address the above problems. In this paper, we further evaluate our approach empirically on natural datasets based on both textual and non-textual sources. We present a theoretical analysis that elucidates our approach and explains the empirical results. 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Rules from Incomplete Examples via Implicit Mention Models

We study the problem of learning general rules from concrete facts extracted from natural data sources such as the newspaper stories and medical histories. Natural data sources present two challenges to automated learning, namely, radical incompleteness and systematic bias. In this paper, we propose an approach that combines simultaneous learning of multiple predictive rules with differential s...

متن کامل

Learning Rules from Incomplete Examples: A Pragmatic Approach

In this paper, we consider the problem of inductively learning rules from specific facts extracted from texts. This problem is challenging due to two reasons. First, natural texts are radically incomplete since there are always too many facts to mention. Second, natural texts are systematically biased towards novelty and surprise, which presents an unrepresentative sample to the learner. Our so...

متن کامل

Mining from incomplete quantitative data by fuzzy rough sets

Machine learning can extract desired knowledge from existing training examples and ease the development bottleneck in building expert systems. Most learning approaches derive rules from complete data sets. If some attribute values are unknown in a data set, it is called incomplete. Learning from incomplete data sets is usually more difficult than learning from complete data sets. In the past, t...

متن کامل

Learning Fuzzy Rules from Incomplete Quantitative Data by Rough Sets

In this paper, we deal with the problem of learning from incomplete quantitative data sets based on rough sets. Quantitative values are first transformed into fuzzy sets of linguistic terms using membership functions. Unknown attribute values are then assumed to be any possible linguistic terms and are gradually refined according to the fuzzy incomplete lower and upper approximations derived fr...

متن کامل

Learning Rules from Incomplete Examples via a Probabilistic Mention Model

We consider the problem of learning rules from natural language text sources. These sources, such as news articles, journal articles, and web texts, are created by a writer to communicate information to a reader, where the writer and reader share substantial domain knowledge. Consequently, the texts tend to be concise and mention the minimum information necessary for the reader to draw the corr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011